Mathematik 1 | Die geometrische Folge und die endliche geometrische Reihe

Die geometrische Folge beschreibt exponentielle Wachstumsprozesse (z. B. die Entwicklung von Corona-Infektionszahlen bei konstanter Reproduktionszahl R).

Share
Mathematik 1 | Arithmetische Folgen und Reihen und wo sie vorkommen

Wir erklären, was arithmetische Folgen und Reihen sind und wie man letztere mit dem "kleinen Gauß" explizit berechnen kann.

Share
Mathematics 1 | Integration by Substitution

We explain integration by substitution, both for definite and indefinite integrals, and work out several examples.

Share
Mathematics 1 | Integration by Parts: Halfway to the Solution

We explain the method of integration by parts and work out several examples.

Share
Mathematics 1 | Definite Integrals and Area Functions

Finding area functions and finding derivatives are inverse processes of each other. We explain this close link in detail, revealing one of the most fundamental relationships in calculus.

Share
Mathematics 1 | Indefinite Integrals, Primitives, and Antiderivatives

Three names, one idea: For a given function f find another function F, such that f is the derivative of F.

Share
Mathematics 1 | Single Variable Optimization: A Rather Lengthy Story

We perform a complete walk-through of a single variable optimization of an example function.

Share
Mathematics 1 | De l’Hôpital’s Rule featuring Hart-Und-Trocken-Män

De l'Hôpital's rule helps to find limits of functions in certain "pathological" cases. The Hart-Und-Trocken-Män does not help at all.

Share
Mathematics 1 | Limits of Functions: Leaving the Comfort Zone

How does a function behave if the independent variable stretches towards the boundary of the domain?

Share
Mathematics 1 | Continuity: Know Your Limits

We explain what a continuous function is and how we precisely define continuity using limits of sequences.

Share